Страница:
<< 1 2 [Всего задач: 8]
Задача
65097
(#6)
|
|
Сложность: 3+ Классы: 8,9
|
Выпуклый пятиугольник ABCDE таков, что AB || CD, BC || AD, AC || DE, CE ⊥ BC. Докажите, что EC – биссектриса угла BED.
Задача
65098
(#7)
|
|
Сложность: 4 Классы: 8,9
|
По окружности записали красным пять несократимых дробей с нечётными знаменателями, большими 1010. Между каждыми двумя соседними красными дробями вписали синим несократимую запись их суммы. Могло ли случиться, что у синих дробей все знаменатели меньше 100?
Задача
65099
(#8)
|
|
Сложность: 4 Классы: 8,9
|
Какое наибольшее количество белых и чёрных пешек можно расставить на клетчатой доске 9×9 (пешку, независимо от её цвета, можно ставить на любую клетку доски) так, чтобы никакая из них не била никакую другую (в том числе и своего цвета)? Белая пешка бьёт две соседние по диагонали клетки на соседней горизонтали с бóльшим номером, а чёрная – две соседние по диагонали клетки на соседней горизонтали с меньшим номером (см. рисунок).
Страница:
<< 1 2 [Всего задач: 8]