Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 150]
|
|
|
Сложность: 4- Классы: 9,10,11
|
Итоговый балл в фигурном катании выставляется следующим образом. Бригада судей состоит из десяти человек. Каждый из судей ставит спортсмену свою оценку за выступление. После этого из десяти полученных оценок случайным образом выбираются семь. Сумма этих семи оценок и есть итоговый балл. Места между спортсменами распределяются в соответствии с набранным итоговым баллом: чем выше балл, тем лучше результат. В чемпионате участвовало 6 спортсменов. Могло ли оказаться так, что:
а) спортсмен, у которого сумма всех 10 оценок максимальна, занял последнее место?
б) спортсмен, у которого сумма всех 10 оценок максимальна, занял последнее место, а спортсмен, у которого сумма всех 10 оценок минимальна, занял первое место?
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Можно ли:
а) нагрузить две монеты так, чтобы вероятности выпадения "орла" и "решки" были разные, а вероятности выпадения любой из комбинаций "решка, решка", "орел, решка", "орел, орел" были бы одинаковы?
б) нагрузить две кости так, чтобы вероятность выпадения любой суммы от 2 до 12 была одинаковой?
|
|
|
Сложность: 4- Классы: 9,10,11
|
На рулетке может выпасть любое число от 0 до 2007 с одинаковой вероятностью. Рулетку крутят раз за разом. Обозначим через Pk вероятность того, что в какой-то момент сумма чисел, выпавших при всех сделанных бросках, равна k. Какое число больше:
P2007 или P2008?
|
|
|
Сложность: 4- Классы: 9,10,11
|
На рисунке изображена схема трассы для картинга. Старт и финиш в точке A, причём картингист по дороге может сколько угодно раз заезжать в точку A и возвращаться на круг.
На путь от A до B или обратно юный гонщик Юра тратит минуту. На путь по кольцу Юра также тратит минуту. По кольцу можно ездить только против часовой стрелки (стрелки показывают возможные направление движения). Юра не поворачивает назад на полпути и не останавливается. Длительность заезда 10 минут. Найдите число возможных различных маршрутов (последовательностей прохождения участков).
|
|
|
Сложность: 4- Классы: 9,10,11
|
На экзамене даётся три задачи по тригонометрии, две по алгебре и пять по геометрии. Ваня решает задачи по тригонометрии с вероятностью
p1 = 0,2, по геометрии – с вероятностью p2 = 0,4, по алгебре – с вероятностью p3 = 0,5. Чтобы получить тройку, Ване нужно решить не менее пяти задач.
а) С какой вероятностью Ваня решит не менее пяти задач?
Ваня решил усиленно заняться задачами какого-нибудь одного раздела. За неделю он может увеличить вероятность решения заданий этого раздела на 0,2.
б) Каким разделом следует заняться Ване, чтобы вероятность решить не менее пяти задач стала наибольшей?
в) Каким разделом следует заняться Васе, чтобы математическое ожидание числа решённых задач стало наибольшим?
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 150]