ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 65348

Темы:   [ Дискретное распределение ]
[ Средние величины ]
Сложность: 4-
Классы: 9,10,11

  На рисунке показано платежное поручение на оплату электричества некоторой энергосбытовой компании.

  Каждый месяц клиент передаёт компании показания трёхтарифного счётчика, установленного в квартире. Из показаний за текущий месяц вычитаются соответствующие показания за прошлый месяц, получается фактический расход за месяц по каждой из трёх тарифных зон (пик, ночь, полупик). Затем расход по каждой зоне умножается на цену одного киловатт-часа в этой зоне. Складывая полученные суммы, клиент получает общую сумму оплаты за месяц. В данном примере клиент заплатит 660 р.72 коп.
  Компания ведет учёт расхода и оплаты электроэнергии, пользуясь данными, полученными от клиента. Проблема состоит в том, что компания иногда путает полученные шесть чисел, переставляя их произвольном порядке, правда, следит за тем, чтобы текущее показание оставалось больше, чем предыдущее. В результате расчёт компании может оказаться ошибочным. Если компания считает, что клиент должен больше, чем он заплатил, компания требует доплатить разность.
  Пользуясь данными изображенной квитанции, найдите:
    а) максимально возможную сумму доплаты за март 2013 года, которую компания потребует у клиента;
    б) математическое ожидание разности между суммой, которую насчитает компания, и суммой, которую заплатил клиент.

Прислать комментарий     Решение

Задача 65349

Тема:   [ Дискретное распределение ]
Сложность: 4-
Классы: 8,9,10,11

Каждый день пёс Патрик сгрызает одну тапочку из имеющегося дома запаса. Строго с вероятностью 0,5 Патрик хочет сгрызть левую тапочку и с вероятностью 0,5 – правую. Если желаемой тапочки нет, Патрик расстраивается. Сколько пар одинаковых тапочек нужно купить, чтобы с вероятностью не меньше чем 0,8 Патрик не расстраивался целую неделю (7 дней)?

Прислать комментарий     Решение

Задача 65350

Тема:   [ Дискретное распределение ]
Сложность: 4-
Классы: 8,9,10,11

Найдите вероятность того, что орёл выпадет чётное число раз, в эксперименте, в котором:
  а) симметричную монету бросают n раз;
  б) n раз бросают монету, у которой вероятность выпадения орла при одном бросании равна p  (0 < p < 1).

Прислать комментарий     Решение

Задача 65351

Темы:   [ Дискретное распределение ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

В Анчурии готовятся президентские выборы, в которых хочет победить президент Мирафлорес. Ровно половина многочисленных избирателей поддерживает Мирафлореса, а другая половина – Дика Малони. Мирафлорес тоже является избирателем. По закону он имеет право поделить всех избирателей на два избирательных округа по своему усмотрению. В каждом из округов голосование проводится следующим образом: каждый избиратель отмечает на бюллетене имя своего кандидата; все бюллетени помещаются в урну. Затем из урны достаётся один случайный бюллетень, и тот, чьё имя на нём отмечено, победит в этом округе. Кандидат побеждает на выборах, только если победит в обоих округах. Если победитель не выявился, назначается следующий тур голосования по тем же правилам. Как Мирафлорес должен поделить избирателей, чтобы максимизировать вероятность своей победы на первом туре?

Прислать комментарий     Решение

Задача 65352

Темы:   [ Дискретное распределение ]
[ Геометрическая прогрессия ]
[ Средние величины ]
Сложность: 4-
Классы: 9,10,11

В страшную грозу по верёвочной лестнице цепочкой поднимаются n гномиков. Если вдруг случится удар грома, то от испуга каждый гномик, независимо от других, может упасть с вероятностью p  (0 < p < 1).  Если гномик падает, то он сшибает и всех гномиков, которые находятся ниже. Найдите:
  а) Вероятность того, что упадёт ровно k гномиков.
  б) Математическое ожидание числа упавших гномиков.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .