Страница:
<< 1 2 [Всего задач: 9]
Задача
65637
(#7.6)
|
|
Сложность: 3+ Классы: 6,7,8
|
Мальвина записала равенство МА·ТЕ·МА·ТИ·КА = 2016000 и предложила Буратино заменить одинаковые буквы одинаковыми цифрами, разные буквы – разными цифрами, чтобы равенство стало верным. Есть ли у Буратино шанс выполнить задание?
Задача
65638
(#7.7)
|
|
Сложность: 3+ Классы: 6,7,8
|
Буратино выложил на стол 2016 спичек и предложил Арлекину и Пьеро сыграть в игру, беря по очереди спички со стола: Арлекин может своим ходом брать либо 5 спичек, либо 26, а Пьеро – либо 9, либо 23. Не дождавшись начала игры, Буратино ушел, а когда он вернулся, партия уже закончилась. На столе осталось
две спички, а проиграл тот, кто не смог сделать очередной ход. Хорошенько подумав, Буратино понял, кто ходил первым, и кто выиграл. Выясните это и вы!
Задача
65639
(#7.8)
|
|
Сложность: 3+ Классы: 6,7,8
|
Квадраты ABCD и BEFG расположены так, как показано на рисунке. Оказалось, что точки A, G и E лежат на одной прямой.
Докажите, что тогда точки D, F и E также лежат на одной прямой.
Задача
65640
(#7.9)
|
|
Сложность: 4- Классы: 6,7,8
|
Среди актеров театра Карабаса Барабаса прошёл шахматный турнир. Каждый участник сыграл с каждым из остальных ровно один раз. За победу давали один сольдо, за ничью – полсольдо, за поражение не давалось ничего. Оказалось, что среди каждых трёх участников найдётся шахматист, заработавший в партиях с двумя другими ровно 1,5 сольдо. Какое наибольшее количество актеров могло участвовать в таком турнире?
Страница:
<< 1 2 [Всего задач: 9]