Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 48]
Задача
66162
(#11.1)
|
|
Сложность: 3+ Классы: 9,10,11
|
Число x таково, что обе суммы S = sin 64x + sin 65x и C = cos 64x + cos 65x – рациональные числа.
Докажите, что в одной из этих сумм оба слагаемых рациональны.
Задача
66013
(#11.2)
|
|
Сложность: 3+ Классы: 9,10,11
|
Вася задумал восемь клеток шахматной доски, никакие две из которых не лежат в одной строке или в одном столбце. За ход Петя выставляет на доску восемь ладей, не бьющих друг друга, а затем Вася указывает все ладьи, стоящие на задуманных клетках. Если количество ладей, указанных Васей на этом ходе, чётно (то есть 0, 2, 4, 6 или 8), то Петя выигрывает; иначе все фигуры снимаются с доски и Петя делает следующий ход. За какое наименьшее число ходов Петя сможет гарантированно выиграть?
Задача
66019
(#10.2)
|
|
Сложность: 3+ Классы: 9,10,11
|
Окружность с центром I вписана в четырёхугольник ABCD. Лучи BA и CD пересекаются в точке P, а лучи AD и BC пересекаются в точке Q. Известно, что точка P лежит на описанной окружности ω треугольника AIC. Докажите, что точка Q тоже лежит на окружности ω.
Задача
66013
(#9.2)
|
|
Сложность: 3+ Классы: 9,10,11
|
Вася задумал восемь клеток шахматной доски, никакие две из которых не лежат в одной строке или в одном столбце. За ход Петя выставляет на доску восемь ладей, не бьющих друг друга, а затем Вася указывает все ладьи, стоящие на задуманных клетках. Если количество ладей, указанных Васей на этом ходе, чётно (то есть 0, 2, 4, 6 или 8), то Петя выигрывает; иначе все фигуры снимаются с доски и Петя делает следующий ход. За какое наименьшее число ходов Петя сможет гарантированно выиграть?
Задача
66148
(#9.2)
|
|
Сложность: 4- Классы: 8,9,10
|
Дана равнобокая трапеция ABCD с основаниями BC и AD. Окружность ω проходит через вершины B и C и вторично пересекает сторону AB и диагональ BD в точках X и Y соответственно. Касательная, проведённая к окружности ω в точке C, пересекает луч AD в точке Z. Докажите, что точки X, Y и Z лежат на одной прямой.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 48]