ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Уважаемые господа! Сегодня вам предлагается для каждого из следующих типов комбинаторных объектов:
    1) перестановки N-элементного множества (лексикографический порядок);
    2) K-элементные подмножества N-элементного множества (лексикографический порядок);
    3) разбиения N-элементного множества на K непустых подмножеств (лексикографический, т.е. алфавитный, порядок);
    4) разбиения числа N на слагаемые;
    5) правильные скобочные последовательности из 2N скобок;
    6) двоичные деревья с N вершинами;
    7) цепочки из нулей и единиц длины N без двух единиц подряд;
    8) перестановки N-элементного множества (порядок, в котором соседние перестановки отличаются транспозицией соседних элементов);
    9) K-элементные подмножества N-элементного множества (порядок, в котором соседние подмножества отличаются двумя элементами);
    10) все подмножества N-элементного множества (порядок, в котором соседние подмножества отличаются добавлением или удалением одного элемента);
    11) подвешенные деревья с N вершинами;
решить следующие две подзадачи:
    найти общее количество объектов и породить M объектов, начиная с L-го;
    по заданным объектам получить их номера.
В качестве N-элементного множества везде подразумевается множество {1, ..., N}. Там, где порядок порождения комбинаторных объектов не указан, Вы можете выбрать его по своему усмотрению. Нумерация объектов начинается с нуля.

Таким образом, Вам предстоит написать 11 программ. Задача засчитывается, если Ваша программа прошла все тесты, в противном случае
Вам начисляются штрафные баллы за неверный подход (20% от стоимости задачи), и Вы имеете возможность исправить решение.
В зависимости от того, какую из подзадач требуется решить, входной и выходной файлы имеют один из следующих двух форматов (тем самым, Ваша программа должна сама определять номер решаемой подзадачи).

Входные данные для подзадачи 1

N K L M

Выходные данные для подзадачи 1

<Число объектов>
<Объект номер L>
...
<Объект номер L+M-1>
Каждый объект должен выводиться с новой строки. Формат вывода объектов
остается на Ваше усмотрение с условием, что он должен быть читабельным.

Входные данные для подзадачи 2

N K
<Объект 1>
...
<Объект M>
Формат записи объектов будет соответствовать выходному формату, используемому Вашей программой при решении подзадачи 1.

Выходные данные для подзадачи 2

<Номер объекта 1>
...
<Номер объекта M>
Каждый номер должен быть выведен с новой строки.

Технические ограничения

Если в данной задаче число K не используется, то вместо него будет указан нуль. Числа N и K во всех задачах не превосходят 100, число L не превышает 2·109 , число M – 10 000. Номера объектов в подзадаче 2 не будут превышать 2.1·109. Все входные данные корректны.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 67077  (#6)

Тема:   [ Взвешивания ]
Сложность: 4
Классы: 7,8,9,10

Для турнира изготовили 7 золотых, 7 серебряных и 7 бронзовых медалей. Все медали из одного металла должны весить одинаково, а из разных должны иметь различные массы. Но одна из всех медалей оказалась нестандартной – имела неправильную массу. При этом нестандартная золотая медаль может весить только меньше стандартной золотой, бронзовая – только больше стандартной бронзовой, а серебряная может отличаться по весу от стандартной серебряной в любую сторону. Можно ли за три взвешивания на чашечных весах без гирь найти нестандартную медаль?

Прислать комментарий     Решение

Задача 67023  (#7)

Темы:   [ Многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Простые числа и их свойства ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Комбинаторика (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Белухов Н.

Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна  $p$ – 1.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .