|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй. Квадрат суммы цифр числа A равен сумме цифр числа A2. Найдите все такие двузначные числа A. Дан треугольник ABC. Найдите на прямой AB точку M, для которой сумма радиусов описанных окружностей треугольников ACM и BCM была бы наименьшей. (Число разбиений; предлагалась на Всесоюзной олимпиаде по программированию 1988 года) Пусть P(n) — число разбиений целого положительного n на целые положительные слагаемые (без учёта порядка, 1 + 2 и 2 + 1 — одно и то же разбиение). При n = 0 положим P(n) = 1 (единственное разбиение не содержит слагаемых). Построить алгоритм вычисления P(n) для заданного n. |
Страница: 1 [Всего задач: 1]
Страница: 1 [Всего задач: 1] |
|||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|