ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Прямоугольник составлен из шести квадратов (см. правый рисунок). Найдите сторону самого большого квадрата, если сторона самого маленького равна 1.
Разрежьте изображённую на левом рисунке фигуру на две одинаковые части.
|
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 401]
На одной стороне угла A взяты точки B, C, D, а на другой – точки E, F, G, так, что FD ⊥ BC, CG ⊥ EF, EC ⊥ BD, BF ⊥ EG. Отношение длины отрезка BE к расстоянию от точки A до центра описанной вокруг четырёхугольника BDGE окружности равно 20/17. Найдите величину угла A.
Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.
Вокруг равнобедренного треугольника ABC с основанием AC описана окружность ω. Точка F – ортоцентр треугольника ABC; продолжение высоты CE пересекает ω в точке G. Докажите, что высота AD является касательной к описанной окружности треугольника GBF.
В треугольнике KLM точка B — центр вписанной окружности, а
точка C — центр окружности, описанной около треугольника KLM.
Прямая BC перпендикулярна биссектрисе MB треугольника KLM.
Известно, что угол BMC равен
Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости.
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 401]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке