Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Может ли фигура иметь более одного, но конечное число центров симметрии?

Вниз   Решение


Докажите, что числа от 1 до 2001 включительно нельзя выписать подряд в некотором порядке так, чтобы полученное число было точным кубом.

ВверхВниз   Решение


Решите в целых числах уравнения:
  а)  3x² + 5y² = 345;
  б)  1 + x + x² + x³ = 2y.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по стороне, притиволежащему углу и медиане, проведённой из вершины одного из прилежащих углов.

ВверхВниз   Решение


В прямоугольном треугольнике ABC  (∠C = 90°)  биссектрисы AA1 и BB1 пересекаются в точке I. Пусть O – центр описанной окружности треугольника CA1B1. Докажите, что  OIAB.

ВверхВниз   Решение


Окружность, вписанная в прямоугольный треугольник ABC, касается катетов AC и BC в точках B1 и A1, а гипотенузы – в точке C1. Прямые C1A1 и C1B1 пересекают CA и CB соответственно в точках B0 и A0. Докажите, что  AB0 = BA0.

ВверхВниз   Решение


Окружность с центром в точке пересечения диагоналей AC и BC равнобедренной трапеции ABCD касается меньшего основания BC и боковой стороны AB. Найдите площадь трапеции ABCD, если известно, что её высота равна 16, а радиус окружности равен 3.

ВверхВниз   Решение


В трапеции ABCD  AD || BC)  угол ADB в два раза меньше угла ACB. Известно, что  BC = AC = 5  и  AD = 6.  Найдите площадь трапеции.

ВверхВниз   Решение


На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
Докажите, что отношение  SDEF : SABC   а) больше 1;   б) не меньше 2.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 154]      



Задача 88176

Тема:   [ Задачи на движение ]
Сложность: 2
Классы: 5,6,7

Три бегуна – Антон, Серёжа и Толя – участвуют в беге на 100 м. Когда Антон финишировал, Серёжа находился в 10 метрах позади него, а когда финишировал Серёжа, Толя находился позади него в 10 метрах. На каком расстоянии друг от друга находились Толя и Антон, когда Антон финишировал? (Предполагается, что все мальчики бегут с постоянными, но, конечно, не равными скоростями.)

Прислать комментарий     Решение

Задача 89931

Тема:   [ Задачи на движение ]
Сложность: 2
Классы: 6,7

Дорога от дома до школы занимает у Пети 20 минут. Однажды по дороге в школу он вспомнил, что забыл дома ручку. Если теперь он продолжит свой путь с той же скоростью, то придёт в школу за 3 минуты до звонка, а если вернётся домой за ручкой, то, идя с той же скоростью, опоздает к началу урока на 7 минут. Какую часть пути он прошёл до того, как вспомнил о ручке?

Прислать комментарий     Решение

Задача 89941

 [Руслан и Людмила]
Темы:   [ Задачи на движение ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6

"Идет направо – песнь заводит, налево – сказку говорит". Чтобы рассказать сказку, ученому Коту требуется 5 минут, а чтобы спеть песню – 4 минуты. В 10 часов утра Кот начал рассказывать сказку. Куда будет идти Кот в полдень?

Прислать комментарий     Решение

Задача 32873

Тема:   [ Задачи на движение ]
Сложность: 2+
Классы: 7

Мимо наблюдателя поезд проходит за 10 секунд, а мимо моста длиной 400 метров – за 30 секунд. Считается, что поезд проходит мимо моста начиная с того момента, когда локомотив въезжает на мост, и кончая моментом, когда последний вагон покидает мост. Определите длину и скорость поезда.

Прислать комментарий     Решение

Задача 32874

Темы:   [ Задачи на движение ]
[ Средние величины ]
Сложность: 2+
Классы: 7

Один путник шел первые полпути со скоростью 4 км/ч, а вторые полпути со скоростью 6 км/ч. Другой путник шел первую половину времени со скоростью со скоростью 4км/ч, а вторую половину времени со скоростью 6 км/ч. С какой постоянной скоростью должен был бы идти каждый из них, чтобы затратить на свое путешествие то же самое время?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 154]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .