ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В пирамиде ABCD двугранные углы с рёбрами AB , BC и CA равны α1 , α2 и α3 соответственно, а площади треугольников ABD , BCD и CAD равны соответственно S1 , S2 и S3 . Площадь треугольника ABC равна S . Докажите, что S = S1 cos α1 + S2 cos α2 + S3 cos α3 (некоторые из углов α1 , α2 и α3 могут быть тупыми). |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 112]
Рассмотрим все возможные наборы чисел из множества {1, 2, 3, ..., n}, не содержащие двух соседних чисел.
Требуется сделать набор гирек, каждая из которых весит целое число граммов,
с помощью которых можно взвесить любой целый вес от 1 до 55 граммов включительно даже в том случае, если некоторые гирьки потеряны (гирьки кладутся на одну чашку весов, измеряемый вес – на другую). Рассмотрите два варианта задачи:
По данному натуральному числу a0 строится последовательность {an} следующим образом
На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках?
Докажите, что многочлен P(x) = (xn+1 – 1)(xn+2 – 1)...(xn+m – 1) делится на Q(x) = (x – 1)(x2 – 1)...(xm – 1).
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 112]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке