ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 21445]      



Задача 88161

Тема:   [ Последовательности (прочее) ]
Сложность: 2-
Классы: 5,6,7

Найдите недостающие числа:

Прислать комментарий     Решение

Задача 88178

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2-
Классы: 5,6,7

Обязательно ли среди двадцати пяти "медных" монет (т.е. монет достоинством 1, 2, 3, 5 коп.) найдётся семь монет одинакового достоинства?
Прислать комментарий     Решение


Задача 88213

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2-
Классы: 5,6,7

Известно, что в январе четыре пятницы и четыре понедельника. На какой день недели приходится 1 января?
Прислать комментарий     Решение


Задача 88229

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Найдите двузначное число, которое в 5 раз больше суммы своих цифр.
Прислать комментарий     Решение


Задача 88234

Тема:   [ Объединение, пересечение и разность множеств ]
Сложность: 2-
Классы: 5,6,7

В первом пенале лежат лиловая ручка, зелёный карандаш и красный ластик; во втором – синяя ручка, зелёный карандаш и жёлтый ластик; в третьем – лиловая ручка, оранжевый карандаш и жёлтый ластик. Содержимое этих пеналов характеризуется такой закономерностью: в каждых двух из них ровно одна пара предметов совпадает и по цвету, и по назначению. Что должно лежать в четвёртом пенале, чтобы эта закономерность сохранилась? (В каждом пенале лежит ровно три предмета: ручка, карандвш и ластик.)

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 21445]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .