ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

На сколько частей могут разделить пространство n плоскостей?
(Каждые три плоскости пересекаются в одной точке, никакие четыре плоскости не имеют общей точки.)

Вниз   Решение


Натуральное число n разрешается заменить на число ab, если  a + b = n  и числа a и b натуральные.
Можно ли с помощью таких замен получить из числа 22 число 2001?

ВверхВниз   Решение


Расставьте числа  1, 2, 3, ..., 9  в кружочках так, чтобы сумма чисел на каждой стороне треугольника равнялась 17.

ВверхВниз   Решение


Сто друзей, среди которых есть Петя и Вася, живут в нескольких городах. Петя узнал расстояние от своего города до города каждого из оставшихся 99 друзей и сложил эти 99 чисел. Аналогично поступил Вася. Петя получил 1000 км. Какое наибольшее число мог получить Вася? (Города считайте точками плоскости; если двое живут в одном и том же городе, расстояние между их городами считается равным нулю.)

ВверхВниз   Решение


Известно, что  b – c > a  и  а ≠ 0.  Обязательно ли уравнение  ax² + bx + c = 0  имеет два корня?

ВверхВниз   Решение


Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

ВверхВниз   Решение


Можно ли разрезать равносторонний треугольник на пять попарно различных равнобедренных треугольников.

ВверхВниз   Решение


В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.

ВверхВниз   Решение


Докажите, что в выпуклый центрально-симметричный многоугольник можно поместить ромб вдвое меньшей площади.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 21641]      



Задача 88105

Тема:   [ Арифметическая прогрессия ]
Сложность: 2-
Классы: 8,9

Делится ли на 1999 сумма чисел 1 + 2 + 3 +...+ 1999?
Прислать комментарий     Решение


Задача 88127

Тема:   [ Взвешивания ]
Сложность: 2-
Классы: 5,6,7

Из набора гирек с массами 1, 2, ..., 101 г потерялась гирька массой 19 г. Можно ли оставшиеся 100 гирек разложить на две кучки по 50 гирек в каждой так, чтобы массы обеих кучек были одинаковы?
Прислать комментарий     Решение


Задача 88142

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Найдите наибольшее шестизначное число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр.
Прислать комментарий     Решение


Задача 88143

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Найдите наибольшее число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр.
Прислать комментарий     Решение


Задача 88150

Тема:   [ Математическая логика (прочее) ]
Сложность: 2-
Классы: 5,6,7

Первый вторник месяца Митя провёл в Смоленске, а первый вторник после первого понедельника  — в Вологде. В следующем месяце Митя первый вторник провёл во Пскове, а первый вторник после первого понедельника  — во Владимире. Сможете ли вы определить, какого числа и какого месяца Митя был в каждом из городов?
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 21641]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .