ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 163]      



Задача 66641

Темы:   [ Раскраски ]
[ Сферы (прочее) ]
[ Куб ]
[ Тетраэдр (прочее) ]
Сложность: 3+
Классы: 10,11

Известно, что если у правильного $N$-угольника, находящегося внутри окружности, продлить все стороны до пересечения с этой окружностью, то $2N$ добавленных к сторонам отрезков можно разбить на две группы с одинаковой суммой длин.

А верно ли аналогичное утверждение для находящегося внутри сферы

а) произвольного куба;

б) произвольного правильного тетраэдра?

(Каждое ребро продлевают в обе стороны до пересечения со сферой. В итоге к каждому ребру добавляется по отрезку с обеих сторон. Требуется покрасить каждый из них либо в красный, либо в синий цвет, чтобы сумма длин красных отрезков была равна сумме длин синих.)

Прислать комментарий     Решение

Задача 65619

Темы:   [ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Какое наименьшее количество цветов необходимо, чтобы покрасить все вершины, стороны и диагонали выпуклого n-угольника, если должны выполняться два условия:
  1) каждые два отрезка, выходящие из одной вершины должны быть разного цвета;
  2) цвет любой вершины должен отличаться от цвета любого отрезка, выходящего из неё?

Прислать комментарий     Решение

Задача 65956

Темы:   [ Раскраски ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9

Некоторые клетки белого прямоугольника размером 3×7 произвольным образом покрасили в чёрный цвет. Докажите, что обязательно найдутся четыре клетки одного цвета, центры которых являются вершинами некоторого прямоугольника со сторонами, параллельными сторонам исходного прямоугольника.

Прислать комментарий     Решение

Задача 66084

Темы:   [ Раскраски ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Все натуральные числа, бóльшие единицы, раскрасили в два цвета – синий и красный – так, что сумма каждых двух синих (в том числе одинаковых) – синяя, а произведение каждых двух красных (в том числе одинаковых) – красное. Известно, что при раскрашивании были использованы оба цвета и что число 1024 покрасили в синий цвет. Какого цвета при этом могло оказаться число 2017?

Прислать комментарий     Решение

Задача 66699

Темы:   [ Раскраски ]
[ Четность и нечетность ]
[ Обход графов ]
[ Степень вершины ]
Сложность: 4-
Классы: 8,9,10,11

В каждой вершине выпуклого многогранника сходятся три грани. Каждая грань покрашена в красный, жёлтый или синий цвет.
Докажите, что число вершин, в которых сходятся грани трёх разных цветов, чётно.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 163]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .