ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 163]      



Задача 66119

Темы:   [ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Петя раскрасил каждую клетку квадрата 1000×1000 в один из 10 цветов. Также он придумал такой 10-клеточный многоугольник Ф, что при любом способе положить его по границам клеток на раскрашенный квадрат, все 10 накрытых им клеток будут разного цвета. Обязательно ли Ф – прямоугольник?

Прислать комментарий     Решение

Задача 66606

Темы:   [ Раскраски ]
[ Системы точек ]
[ Геометрия (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Каждая точка плоскости раскрашена в один из трех цветов. Обязательно ли найдется треугольник площади 1, все вершины которого имеют одинаковый цвет?
Прислать комментарий     Решение


Задача 67265

Темы:   [ Раскраски ]
[ Инварианты ]
Сложность: 4
Классы: 7,8,9

На клетчатой доске 10×10 в одной из клеток сидит бактерия. За один ход бактерия сдвигается в соседнюю по стороне клетку и делится на две бактерии (обе остаются в той же клетке). Затем снова одна из сидящих на доске бактерий сдвигается в соседнюю по стороне клетку и делится на две, и так далее. Может ли после нескольких таких ходов во всех клетках оказаться поровну бактерий?
Прислать комментарий     Решение


Задача 67452

Темы:   [ Раскраски ]
[ Оценка + пример ]
Сложность: 4
Классы: 7,8,9,10,11

Каждая клетка квадрата $100\times 100$ покрашена либо в белый, либо в чёрный цвет. Оказалось, что у каждой белой клетки ровно две соседних с ней по стороне клетки покрашены в белый цвет, а у каждой чёрной клетки ровно две соседних с ней по стороне клетки покрашены в чёрный цвет. Найдите максимальное возможное количество чёрных клеток.
Прислать комментарий     Решение


Задача 98224

Темы:   [ Раскраски ]
[ Принцип Дирихле (углы и длины) ]
[ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 9,10,11

В какое наименьшее число цветов нужно раскрасить клетки бесконечного листа клетчатой бумаги, чтобы
  а) каждые две клетки на расстоянии 6 были покрашены в разные цвета?

  б) каждые четыре клетки, образующие фигуру формы буквы Г, были покрашены в четыре разных цвета?
(Расстояние между клетками – наименьшее число линий сетки, горизонтальных и вертикальных, которые должна пересечь ладья на пути из одной клетки в другую.)

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 163]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .