ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 158]      



Задача 109829

Темы:   [ Раскраски ]
[ Целочисленные решетки (прочее) ]
[ Степень вершины ]
[ Перестройки ]
[ Процессы и операции ]
Сложность: 5
Классы: 8,9,10

На бесконечном белом листе клетчатой бумаги конечное число клеток окрашено в чёрный цвет так, что у каждой чёрной клетки чётное число (0, 2 или 4) белых клеток, соседних с ней по стороне. Докажите, что каждую белую клетку можно окрасить в красный или зелёный цвет так, чтобы у каждой чёрной клетки стало поровну красных и зелёных клеток, соседних с ней по стороне.

Прислать комментарий     Решение

Задача 109891

Темы:   [ Раскраски ]
[ Системы точек ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Покрытия ]
Сложность: 5
Классы: 8,9,10,11

На прямой через равные промежутки отмечены 1996 точек. Петя раскрашивает половину из них в красный цвет, а остальные – в синий. Затем Вася разбивает их на пары красная-синяя так, чтобы сумма расстояний между точками в парах была максимальной. Докажите, что этот максимум не зависит от того, какую раскраску сделал Петя.
Прислать комментарий     Решение


Задача 110088

Темы:   [ Раскраски ]
[ Принцип крайнего ]
[ Таблицы и турниры (прочее) ]
[ Доказательство от противного ]
Сложность: 5
Классы: 9,10,11

Каждая клетка клетчатой плоскости раскрашена в один из n² цветов так, что в каждом квадрате из клеток встречаются все цвета. Известно, что в какой-то строке встречаются все цвета. Докажите, что существует столбец, раскрашенный ровно в n цветов.

Прислать комментарий     Решение

Задача 73538

Темы:   [ Раскраски ]
[ Целочисленные решетки ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Шестиугольники ]
[ Правильные многоугольники ]
Сложность: 5+
Классы: 9,10,11

   а) На рис. 1 плоскость покрыта квадратами пяти цветов. Центры квадратов одного и того же цвета расположены в вершинах сетки из одинаковых квадратов. При каком числе n цветов возможно аналогичное заполнение плоскости?

   б) На рис. 2 плоскость покрыта шестиугольниками семи цветов так, что центры шестиугольников одного и того же цвета образуют вершины решётки из одинаковых правильных треугольников. При каком числе n цветов возможно аналогичное построение?

   Примечание. Имеются в виду только такие заполнения плоскости фигурками (квадратами или шестиугольниками), при котором сетка, соответствующая какому-то одному цвету, имеет такие же размеры и направления сторон квадратов (или треугольников), как и сетка, соответствующая любому другому цвету (то есть все сетки должны получаться друг из друга параллельным сдвигом).

Прислать комментарий     Решение

Задача 73795

Темы:   [ Раскраски ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Индукция в геометрии ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Периодичность и непериодичность ]
Сложность: 7-
Классы: 8,9,10

Окружность разбита точками A1, A2,..., An на n равных дуг, каждая из которых окрашена в какой-то цвет. Две дуги окружности (с концами в точках разбиения) называем одинаково окрашенными, если при некотором повороте окружности одна из них полностью, включая цвета всех дуг, совпадает с другой. (Например, на рисунке дуги A2A6 и A6A10 одинаково окрашены.)

Докажите, что если для каждой точки разбиения Ak можно указать две непересекающиеся одинаково окрашенные дуги с общим концом Ak, то всю окружность можно разбить на несколько одинаково окрашенных дуг, то есть окраска периодическая. Рассмотрите сначала случай, когда красок всего две, скажем красная и чёрная.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .