Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 158]
|
|
Сложность: 4- Классы: 9,10,11
|
Какое наименьшее количество цветов необходимо, чтобы покрасить все вершины, стороны и диагонали выпуклого n-угольника, если должны выполняться два условия:
1) каждые два отрезка, выходящие из одной вершины должны быть разного цвета;
2) цвет любой вершины должен отличаться от цвета любого отрезка, выходящего из неё?
Некоторые клетки белого прямоугольника размером 3×7 произвольным образом покрасили в чёрный цвет. Докажите, что обязательно найдутся четыре клетки одного цвета, центры которых являются вершинами некоторого прямоугольника со сторонами, параллельными сторонам исходного прямоугольника.
|
|
Сложность: 4- Классы: 8,9,10
|
Все натуральные числа, бóльшие единицы, раскрасили в два цвета – синий и красный – так, что сумма каждых двух синих (в том числе одинаковых) – синяя, а произведение каждых двух красных (в том числе одинаковых) – красное. Известно, что при раскрашивании были использованы оба цвета и что число 1024 покрасили в синий цвет. Какого цвета при этом могло оказаться число 2017?
|
|
Сложность: 4- Классы: 8,9,10,11
|
В каждой вершине выпуклого многогранника сходятся три грани. Каждая грань покрашена в красный, жёлтый или синий цвет.
Докажите, что число вершин, в которых сходятся грани трёх разных цветов, чётно.
|
|
Сложность: 4- Классы: 8,9,10
|
Дана бесконечная клетчатая бумага со стороной клетки, равной единице.
Расстоянием между двумя клетками называется длина кратчайшего пути ладьи от
одной клетки до другой (считается путь центра ладьи). В какое наименьшее число
красок нужно раскрасить доску (каждая клетка закрашивается одной краской), чтобы
две клетки, находящиеся на расстоянии 6, были всегда окрашены разными красками?
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 158]