ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 737]      



Задача 30440

Тема:   [ Симметричная стратегия ]
Сложность: 2+
Классы: 6,7,8

Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение


Задача 35177

Тема:   [ Теория игр (прочее) ]
Сложность: 2+
Классы: 9,10

На плоскости расположены 100 точек-овец и одна точка-волк. За один ход волк передвигается на расстояние не больше 1, после этого одна из овец передвигается на расстояние не больше 1, после этого снова ходит волк и т.д. При любом ли начальном расположении точек волк сможет поймать одну из овец?
Прислать комментарий     Решение


Задача 35474

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 7,8

В компанию из N человек пришел журналист. Ему известно, что в этой компании есть человек Z, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?" Найдите наименьшее количество вопросов, достаточное для того, чтобы наверняка найти Z. (Все отвечают на вопросы правдиво. Одному человеку можно задавать несколько вопросов.)
Прислать комментарий     Решение


Задача 35592

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 2+
Классы: 8,9

Нужно узнать пятизначный номер телефона, задавая вопросы, на которые возможен ответ "да" или "нет". За какое наименьшее число вопросов это гарантированно можно сделать (при условии, что на вопросы даются правильные ответы)?
Прислать комментарий     Решение


Задача 35797

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 7,8

В одной урне лежат два белых шара, в другой два черных, в третьей - один белый и один черный. На каждой урне висела табличка, указывающее ее содержимое: ББ, ЧЧ, БЧ. Некто перевесил таблички так, что теперь каждая табличка указывает содержимое урны неправильно. Разрешается вынуть шар из любой урны, не заглядывая в нее. Какое наименьшее число извлечений потребуется, чтобы определить состав всех трех урн?
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .