ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 488]
а) 100 гирек веса 1, 2, ..., 100 г разложили на две чаши весов так, что есть равновесие. б) Рассмотрим такие n, что набор гирь 1, 2, ... , n г можно
разделить на две части, равные по весу.
В строке записано несколько чисел. Каждую секунду робот выбирает какую-либо пару рядом стоящих чисел, в которой левое число больше правого, меняет их местами и при этом умножает оба числа на 2. Докажите, что через некоторое время сделать очередную такую операцию будет невозможно.
В круговом турнире не было ничьих, за победу присуждалось 1 очко, за поражение – 0. Затем был определен коэффициент каждого участника. Он равнялся сумме очков, набранных теми, кого победил данный спортсмен. Оказалось, что у всех участников коэффициенты равны. Число участников турнира больше двух. Докажите, что все спортсмены набрали одинаковое количество очков.
На столе лежат две кучки монет. Известно, что суммарный вес монет из первой кучки равен суммарному весу монет из второй кучки, а для каждого натурального числа k, не превосходящего числа монет как в первой, так и во второй кучке, суммарный вес k самых тяжелых монет из первой кучки не больше суммарного веса k самых тяжелых монет из второй кучки. Докажите, что если заменить каждую монету, вес которой не меньше x, на монету веса x (в обеих кучках), то первая кучка монет окажется не легче второй, каково бы ни было положительное число x.
В таблице 2×n расставлены положительные числа так, что в каждом из n столбцов сумма двух чисел равна 1.
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 488] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|