Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 488]
|
|
Сложность: 4 Классы: 8,9,10
|
Дана последовательность
...,
a-n,...,
a-1,
a0,
a1,...,
an,...
бесконечная в обе стороны, причём каждый её член равен
суммы
двух соседних. Доказать, что если какие-то два её члена равны, то в ней есть
бесконечное число пар равных между собой чисел. (Пояснение: два члена, про
которые известно, что они равны, не обязательно соседние).
|
|
Сложность: 4 Классы: 8,9,10
|
В некотором государстве города соединены дорогами. Длина каждой дороги меньше 500 км, и из каждого города в любой другой можно попасть, проехав по дорогам меньше 500 км. Когда одна дорога оказалась закрытой на ремонт, выяснилось, что из каждого города можно проехать по оставшимся дорогам в любой другой. Доказать, что при этом можно проехать меньше 1500 км.
|
|
Сложность: 4 Классы: 10,11
|
На плоскости расположено несколько прямых и точек. Доказать, что на плоскости
найдётся точка
A, не совпадающая ни с одной из данных точек, расстояние от
которой до любой из данных точек больше расстояния от неё до любой из данных
прямых.
|
|
Сложность: 4 Классы: 7,8,9
|
а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты.
б) Докажите, что в таблице 2n×2n можно расставить 3n + 1 звёздочку так, что при вычеркивании любых n строк и любых n столбцов остаётся невычеркнутой хотя бы одна звёздочка.
100 гирек веса 1, 2, ..., 100 г разложили на две чаши весов так, что есть
равновесие.
Докажите, что можно убрать по две гирьки с каждой чаши так, что
равновесие не нарушится.
Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 488]