Страница: 1
2 3 4 5 6 7 >> [Всего задач: 60]
|
|
Сложность: 3 Классы: 7,8,9
|
На плоскости отмечены четыре точки. Докажите, что их
можно разбить на две группы так, что эти группы точек нельзя
будет отделить одну от другой никакой прямой.
Решите задачу
20.8, воспользовавшись понятием выпуклой оболочки.
|
|
Сложность: 3 Классы: 8,9,10
|
Выпуклая оболочка. Докажите, что для
любого числа точек плоскости найдется выпуклый многоугольник с
вершинами в некоторых из них, содержащий внутри себя все
остальные точки.
Имеется 1000 деревянных правильных 100-угольников, прибитых к полу. Всю эту
систему мы обтягиваем верёвкой. Натянутая верёвка будет ограничивать некоторый
многоугольник. Доказать, что у него более 99 вершин.
Имеется 57 деревянных правильных 57-угольников, прибитых к полу. Всю эту
систему мы обтягиваем веревкой. Натянутая веревка будет ограничивать некоторый
многоугольник. Доказать, что у него более 56 вершин.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 60]