ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 289]
Ломаная разбивает круг на две равновеликие части. Докажите, что кратчайшая такая ломаная – это диаметр.
Известно, что a, b и c — длины сторон треугольника. Докажите, что
Пусть AB – наименьшая сторона остроугольного треугольника ABC . На сторонах BC и AC выбраны точки X и Y соответственно. Докажите, что длина ломаной AXYB не меньше удвоенной длины стороны AB .
Середины противоположных рёбер тетраэдра соединены. Доказать, что сумма трёх полученных отрезков меньше полусуммы рёбер тетраэдра.
Точка I – центр вписанной окружности треугольника ABC. Внутри треугольника выбрана точка P такая, что Докажите, что AP ≥ AI, причём равенство выполняется тогда и только тогда, когда P совпадает с I.
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 289]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке