ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 1308]      



Задача 35685

Темы:   [ Теория алгоритмов (прочее) ]
[ Криптография ]
Сложность: 3
Классы: 7,8,9

Ключом шифра, называемого "решеткой", является прямоугольный трафарет размера 6 на 10 клеток. В трафарете вырезаны 15 клеток так, что при наложении его на прямоугольный лист бумаги размера 6 на 10 клеток четырьмя возможными способами его вырезы полностью покрывают всю площадь листа. Буквы сообщения (без пропусков) последовательно вписываются в вырезы трафарета (по строкам, в каждой строке слева направо) при каждом из четырех его возможных положений. Прочтите исходный текст, если после зашифрования на листе бумаги оказался следующий текст (на русском языке): \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|} \hline Р & П & Т & Е & Ш & А & В & Е & С & Л \\ \hline О & Я & Т & А & Л & - & Ь & З & Т & - \\ \hline - & У & К & Т & - & Я & А & Ь & - & С \\ \hline Н & П & - & Ь & Е & У & - & Ш & Л & С \\ \hline Т & И & Ь & З & Ы & Я & Е & М & - & О \\ \hline - & Е & Ф & - & - & Р & О & - & С & М \\ \hline \end{tabular} (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Задача 60437

Тема:   [ Формула включения-исключения ]
Сложность: 3
Классы: 8,9,10

Каждая сторона в треугольнике ABC разделена на 8 равных отрезков. Сколько существует различных треугольников с вершинами в точках деления (точки A, B, C не могут быть вершинами треугольников), у которых ни одна сторона не параллельна ни одной из сторон треугольника ABC?

Прислать комментарий     Решение

Задача 60900

Темы:   [ Теория алгоритмов (прочее) ]
[ Троичная система счисления ]
Сложность: 3
Классы: 6,7,8,9

а) У одного человека был подвал, освещавшийся тремя электрическими лампочками. Выключатели этих лампочек находились вне подвала, так что включив любой из выключателей, хозяин должен был спуститься в подвал, чтобы увидеть, какая именно лампочка зажглась. Однажды он придумал способ, как определить для каждого выключателя, какую именно лампочку он включает, сходив в подвал ровно один раз. Какой это способ?
б) Сколько лампочек и выключателей можно идентифицировать друг с другом, если разрешается 2 раза спуститься в подвал?

Прислать комментарий     Решение

Задача 60921

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 6,7,8

4 монеты. Из четырех монет одна фальшивая (она отличается по весу от настоящей, но не известно, в какую сторону). Требуется за два взвешивания на двухчашечных весах без гирь найти фальшивую монету.

Прислать комментарий     Решение

Задача 67315

Темы:   [ Взвешивания ]
[ Показательные функции и логарифмы (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Оценка + пример ]
Сложность: 3
Классы: 9,10,11

У математика есть 19 различных гирь, массы которых в килограммах равны $\ln 2$, $\ln 3$, $\ln 4, \ldots, \ln 20$, и абсолютно точные двухчашечные весы. Он положил несколько гирь на весы так, что установилось равновесие. Какое наибольшее число гирь могло оказаться на весах?
Прислать комментарий     Решение


Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .