Страница:
<< 1 2 3
4 5 >> [Всего задач: 23]
|
|
Сложность: 4 Классы: 9,10,11
|
За дядькой Черномором выстроились чередой бесконечное число богатырей разного роста. Докажите, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечное число богатырей и все они стояли по росту (в порядке возрастания или убывания).
|
|
Сложность: 5 Классы: 8,9,10,11
|
Числа 1, 2, 3, ..., 101 выписаны в ряд в каком-то порядке.
Докажите, что из них можно вычеркнуть 90 так, что оставшиеся 11 будут расположены по их величине (либо возрастая, либо убывая).
|
|
Сложность: 5 Классы: 10,11
|
Последовательность
a1,a2,.. такова, что
a1(1
,2)
и
ak+1
=ak+ при любом натуральном
k .
Докажите, что в ней не может существовать более одной пары членов с целой суммой.
|
|
Сложность: 3+ Классы: 9,10
|
Последовательность натуральных чисел a1, a2, ..., an, ... такова, что для каждого n уравнение an+2x² + an+1x + an = 0 имеет действительный корень. Может ли число членов этой последовательности быть
а) равным 10;
б) бесконечным?
|
|
Сложность: 4- Классы: 10,11
|
Исследуйте последовательности на сходимость:
а)
xn + 1 =
,
x0 = 1;
б)
xn + 1 = sin
xn,
x0 =
a (0;
);
в)
xn + 1 =
,
a > 0,
x0 = 0.
Страница:
<< 1 2 3
4 5 >> [Всего задач: 23]