ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда
a'(b - c) + b'(c - a) + c'(a - b) = 0.
Докажите, что барицентрические координаты точки X,
лежащей внутри треугольника ABC, равны
(SBCX : SCAX : SABX).
Вадим и Лёша спускались с горы. Вадим шёл пешком, а Лёша съезжал на лыжах в семь раз быстрее Вадима. На полпути Лёша упал, сломал лыжи и ногу и пошёл в два раза медленней Вадима. Кто первым спустится с горы? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]
Докажите неравенство для положительных значений переменных: (a + b + c + d)² ≤ 4(a² + b² + c² + d²).
Докажите неравенство для положительных значений переменных:
Докажите неравенство для положительных значений переменных: x² + y² + 1 ≥ xy + x + y.
Докажите неравенство для положительных значений переменных:
При каких значениях a и b выражение p = 2a² − 8ab + 17b² − 16a − 4b + 2044 принимает наименьшее значение? Чему равно это значение?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке