ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

a и b – две данные стороны треугольника.
  Как подобрать третью сторону c так, чтобы точки касания вписанной и вневписанной окружностей с этой стороной делили её на три равных отрезка?
  При каких a и b такая сторона существует?
(Рассматривается вневписанная окружность, касающаяся стороны c и продолжений сторон a и b.)

   Решение

Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 629]      



Задача 88166

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Четность и нечетность ]
[ Арифметика. Устный счет и т.п. ]
[ Обыкновенные дроби ]
Сложность: 2+
Классы: 6,7,8

Дети держат в руках флажки. Тех, у кого в обеих руках поровну флажков, в 5 раз меньше, чем тех, у кого не поровну. Когда каждый ребёнок переложил по одному флажку из одной руки в другую, тех, у кого в обеих руках поровну флажков, стало в 2 раза меньше, чем тех, у кого не поровну. Могло ли быть так, что в начале более чем у половины детей в одной руке было ровно на один флажок меньше, чем в другой?

Прислать комментарий     Решение

Задача 102840

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 7,8

Сумма пяти чисел равна 200. Докажите, что их произведение не может оканчиваться на 1999.

Прислать комментарий     Решение

Задача 102964

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 5,6,7

Петя и Миша играют в такую игру. Петя берёт в каждую руку по монетке: в одну – 10 коп., а в другую – 15. После этого содержимое левой руки он умножает на 4, 10, 12 или 26, а содержимое правой руки – на 7, 13, 21 или 35. Затем Петя складывает два получившихся произведения и называет Мише результат. Может ли Миша, зная этот результат, определить, в какой руке у Пети – правой или левой – монета достоинством в 10 коп.?

Прислать комментарий     Решение

Задача 104025

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Числовые таблицы и их свойства ]
Сложность: 2+
Классы: 7,8,9

Миша написал на доске в некотором порядке 2004 плюса и 2005 минусов. Время от времени Юра подходит к доске, стирает любые два знака и пишет вместо них один, причём если он стёр одинаковые знаки, то вместо них он пишет плюс, а если разные, то минус. После нескольких таких действий на доске остался только один знак. Какой?

Прислать комментарий     Решение

Задача 116476

Темы:   [ Текстовые задачи (прочее) ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 7,8,9

На столе белой стороной кверху лежали 100 карточек, у каждой из которых одна сторона белая, а другая чёрная. Костя перевернул 50 карточек, затем Таня перевернула 60 карточек, а после этого Оля – 70 карточек. В результате все 100 карточек оказались лежащими чёрной стороной вверх. Сколько карточек было перевернуто трижды?

Прислать комментарий     Решение

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .