ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно.
  а) Пусть Pa – такая точка, что точки, симметричные ей относительно прямых OB, OC и OD, лежат в плоскости BCD. Точки Pb, Pc и Pd определяются аналогично. Докажите, что прямые A1Pa, B1Pb, C1Pc и D1Pd пересекаются в некоторой точке P.
  б) Пусть I – центр сферы, вписанной в тетраэдр A1B1C1D1A2 – точка пересечения прямой A1I с плоскостью B1C1D1B2, C2, D2 определены аналогично. Докажите, что P лежит внутри тетраэдра A2B2C2D2.

Вниз   Решение


Расстояние между центрами окружностей больше суммы их радиусов.
Докажите, что середины отрезков четырёх общих касательных этих окружностей лежат на одной прямой.

Вверх   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 630]      



Задача 104082

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Простые числа и их свойства ]
Сложность: 3-
Классы: 6,7,8

В магическом квадрате суммы чисел в каждой строке, в каждом столбце и на обеих диагоналях равны.
Можно ли составить магический квадрат 3×3 из первых девяти простых чисел?

Прислать комментарий     Решение

Задача 30429

Темы:   [ Связность и разложение на связные компоненты ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8

В Тридевятом царстве лишь один вид транспорта – ковер-самолет. Из столицы выходит 21 ковролиния, из города Дальний – одна, а из всех остальных городов – по 20. Докажите, что из столицы можно долететь в Дальний (возможно, с пересадками).

Прислать комментарий     Решение

Задача 30632

Темы:   [ Признаки делимости на 11 ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8

A – шестизначное число, в записи которого по одному разу встречаются цифры 1, 2, 3, 4, 5, 6. Докажите, что A не делится на 11.

Прислать комментарий     Решение

Задача 30754

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 6,7

На шести ёлках сидят шесть чижей, на каждой ёлке – по чижу. Ёлки растут в ряд с интервалами в 10 метров. Если какой-то чиж перелетает с одной ёлки на другую, то какой-то другой чиж обязательно перелетает на столько же метров, но в обратном направлении.
  а) Могут ли все чижи собраться на одной ёлке?
  б) А если чижей и ёлок – семь?

Прислать комментарий     Решение

Задача 30758

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8

На доске написаны числа 1, 2, 3, ..., 1989. Разрешается стереть любые два числа и написать вместо них разность этих чисел.
Можно ли добиться того, чтобы все числа на доске стали нулями?

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 630]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .