Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 233]
Первый член последовательности равен 934. Каждый следующий равен сумме цифр предыдущего, умноженной на 13.
Найдите 2013-й член последовательности.
|
|
Сложность: 3 Классы: 7,8,9
|
Последовательность {xn} определяется условиями: xn+2 = xn – 1/xn+1 при n ≥ 1.
Докажите, что среди членов последовательности найдётся ноль. Найдите номер
этого члена.
|
|
Сложность: 3 Классы: 7,8,9
|
а) Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?
б) При спуске с той же лестницы Леша перепрыгивает через некоторые ступеньки (может даже через все 10). Сколькими способами он может спуститься по этой лестнице?
На доске записаны в ряд сто чисел, отличных от нуля. Известно, что каждое число, кроме первого и последнего, является произведением двух соседних с ним чисел. Первое число – это 7. Какое число последнее?
|
|
Сложность: 3 Классы: 8,9,10
|
Числа
a0,
a1,...,
an,...
определены следующим образом:
a0 = 2,
a1 = 3,
an + 1 = 3
an - 2
an - 1 (
n 2).
Найдите и докажите формулу
для этих чисел.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 233]