ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан куб ABCDA1B1C1D1 с ребром a . Пусть M – такая точка на ребре A1D1 , для которой A1M:MD1 = 1:2 . Найдите периметр треугольника AB1M , а также расстояние от вершины A1 до плоскости, проходящей через вершины этого треугольника.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 31]      



Задача 111351

Темы:   [ Группы движений (самосовмещений) правильных многогранников ]
[ Наименьшая или наибольшая площадь (объем) ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Медиана пирамиды (тетраэдра) ]
[ Площадь и ортогональная проекция ]
[ Неравенства с площадями ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Гомотетия помогает решить задачу ]
Сложность: 7-
Классы: 10,11

Среди вершин любого ли многогранника можно выбрать четыре вершины тетраэдра, площадь проекции которого на любую плоскость составляет от площади проекции (на ту же плоскость) исходного многогранника: а) больше, чем , б) не меньше, чем , в) не меньше, чем ?

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .