Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 113]
[Оружности Схоуте]
|
|
Сложность: 7+ Классы: 9,10,11
|
Опустим из точки
M перпендикуляры
MA1,
MB1 и
MC1 на прямые
BC,
CA и
AB. Для фиксированного треугольника
ABC
множество точек
M, для которых угол Брокара треугольника
A1B1C1 имеет
заданное значение, состоит из двух окружностей, причем одна из них расположена
внутри описанной окружности треугольника
ABC, а другая вне ее
(
окружности Схоуте).
|
|
Сложность: 4- Классы: 7,8,9
|
В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть
прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика
B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в
четвёртую вершину квадрата?
|
|
Сложность: 4 Классы: 8,9,10
|
Сколько существует таких пар натуральных чисел (m, n), каждое из которых не превышает 1000, что
|
|
Сложность: 4 Классы: 8,9,10
|
На плоскости даны точки
A и
B . Доказать, что множество всех
точек
M , удалённых от
A в 3 раза больше, чем от
B , есть
окружность.
[Окружность Аполлония.]
|
|
Сложность: 5- Классы: 8,9
|
Найдите геометрическое место точек, расстояния от каждой из
которых до двух данных точек относятся как m : n.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 113]