Страница:
<< 17 18 19 20 21 22
23 >> [Всего задач: 113]
|
|
Сложность: 7 Классы: 9,10,11
|
а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга.
б) Решите аналогичную задачу для правильного пятиугольника.
в) Для каких правильных n-угольников верно аналогичное утверждение?
|
|
Сложность: 3 Классы: 7,8,9
|
Три кузнечика сидят на прямой так, что два крайних отстоят на 1 м от среднего. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку
(если A прыгает через B в точку A1, то AB = BA1). Через некоторое время кузнечики оказались на тех же местах, что и вначале, но в другом порядке. Докажите, что поменялись местами крайние кузнечики.
|
|
Сложность: 4- Классы: 8,9,10
|
Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?
|
|
Сложность: 5 Классы: 9,10,11
|
На плоскости отмечено
N 3
различных точек.
Известно, что среди попарных расстояний между отмеченными точками
встречаются не более
n различных расстояний.
Докажите, что
N (
n+1)
2 .
|
|
Сложность: 5+ Классы: 8,9,10,11
|
В клетчатом прямоугольнике 49×69 отмечены все
50
· 70
вершин клеток. Двое играют в следующую игру:
каждым своим ходом каждый игрок соединяет две точки отрезком,
при этом одна точка не может являться концом двух проведенных отрезков.
Отрезки могут содержать общие точки.
Отрезки проводятся до тех пор, пока точки не кончатся.
Если после этого первый может выбрать на всех проведенных отрезках направления
так, что сумма всех полученных векторов равна нулевому вектору, то он выигрывает, иначе выигрывает
второй. Кто выигрывает при правильной игре?
Страница:
<< 17 18 19 20 21 22
23 >> [Всего задач: 113]