Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 1354]
|
|
Сложность: 3+ Классы: 7,8,9
|
В треугольнике ABC проведены биссектриса AK, медиана BL и высота CM. Треугольник KLM – равносторонний.
Докажите, что треугольник ABC – равносторонний.
|
|
Сложность: 3+ Классы: 7,8,9
|
Дан треугольник ABC. Точка A1 симметрична вершине A относительно прямой BC, а точка C1 симметрична вершине C относительно прямой AB.
Докажите, что если точки A1, B и C1 лежат на одной прямой и C1B = 2A1B, то угол CA1B – прямой.
|
|
Сложность: 3+ Классы: 7,8,9
|
Три прямоугольных треугольника расположены в одной полуплоскости относительно данной прямой l так, что один из катетов каждого треугольника лежит на этой прямой. Известно, что существует прямая, параллельная l, пересекающая треугольники по равным отрезкам. Докажите, что если расположить треугольники в одной полуплоскости относительно прямой l так, чтобы другие их катеты
лежали на прямой l, то также найдётся прямая, параллельная l , пересекающая их по равным отрезкам.
Точки M и N являются серединами боковых сторон AC и CB равнобедренного треугольника ACB. Точка L расположена на медиане BM так, что
BL : BM = 4 : 9. Окружность с центром в точке L касается прямой MN и пересекает прямую AB в точках Q и T. Найдите периметр треугольника MNC, если QT = 2, AB = 8.
На диагонали AC параллелограмма ABCD взята точка P так,
что AP : PC = 3 : 5. Окружность с центром в точке P касается прямой BC и пересекает отрезок AD в точках K и L. Точка K лежит между точками A и L, AK = 9, KL = 3, LD = 12. Найдите периметр параллелограмма ABCD.
Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 1354]