ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 136 137 138 139 140 141 142 >> [Всего задач: 1110]      



Задача 107837

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

В круговом турнире не было ничьих, за победу присуждалось 1 очко, за поражение – 0. Затем был определен коэффициент каждого участника. Он равнялся сумме очков, набранных теми, кого победил данный спортсмен. Оказалось, что у всех участников коэффициенты равны. Число участников турнира больше двух. Докажите, что все спортсмены набрали одинаковое количество очков.

Прислать комментарий     Решение

Задача 109513

Темы:   [ Турниры и турнирные таблицы ]
[ Разбиения на пары и группы; биекции ]
[ Правильные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

В турнире по теннису n участников хотят провести парные (двое на двое) матчи так, чтобы каждый из участников имел своим противником каждого из остальных ровно в одном матче. При каких n возможен такой турнир?

Прислать комментарий     Решение


Задача 109542

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Выигрышные и проигрышные позиции ]
Сложность: 4
Классы: 7,8,9

Из квадратной доски 1000×1000 клеток удалены четыре прямоугольника 2×994 (см. рис.).

На клетке, помеченной звездочкой, стоит кентавр – фигура, которая за один ход может перемещаться на одну клетку вверх, влево или по диагонали вправо и вверх. Двое игроков ходят кентавром по очереди. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?

Прислать комментарий     Решение

Задача 109824

Темы:   [ Числовые таблицы и их свойства ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Неравенство Коши ]
Сложность: 4
Классы: 8,9,10

В таблице 2×n расставлены положительные числа так, что в каждом из n столбцов сумма двух чисел равна 1.
Докажите, что можно вычеркнуть по одному числу в каждом столбце так, чтобы в каждой строке сумма оставшихся чисел не превосходила  n+1/4.

Прислать комментарий     Решение

Задача 109827

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 7,8,9,10

В некоторые 16 клеток доски 8×8 поставили по ладье. Какое наименьшее количество пар бьющих друг друга ладей могло при этом оказаться?

Прислать комментарий     Решение

Страница: << 136 137 138 139 140 141 142 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .