ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 153]      



Задача 104094

Темы:   [ Задачи на движение ]
[ Средние величины ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3+
Классы: 8,9,10

 Гриша едет по маршруту длиной 100 км. В его автомобиле имеется компьютер, дающий прогноз времени, оставшегося до прибытия в конечный пункт. Это время рассчитывается исходя из предположения, что средняя скорость автомобиля на оставшемся участке пути будет такой же, как и на уже пройденном.
  Сразу же после старта компьютер показал "2 часа" и всё дальнейшее время показывал именно это число (компьютер исправен). Найдите x(t) – зависимость пути, который проехал Гриша, от времени с момента старта. Постройте график этой зависимости.

Прислать комментарий     Решение

Задача 108969

Тема:   [ Задачи на движение ]
Сложность: 3+
Классы: 7,8,9

Расстояние между пунктами A и B равно 40 км. Пешеход вышел из A в 4 часа. Когда он прошёл половину пути, его догнал велосипедист, который выехал из A в 7:20. Через час после этого пешеход встретил другого велосипедиста, который выехал из B в 8:30. Скорости велосипедистов одинаковы. Определить скорость пешехода.

Прислать комментарий     Решение


Задача 110191

Тема:   [ Задачи на движение ]
Сложность: 3+
Классы: 7,8,9

В 12 часов дня "Запорожец" и "Москвич" находились на расстоянии 90 км и начали двигаться навстречу друг другу с постоянной скоростью. Через два часа они снова оказались на расстоянии 90 км. Незнайка утверждает, что "Запорожец" до встречи с "Москвичом" и "Москвич" после встречи с "Запорожцем" проехали в сумме 60 км. Докажите, что он неправ.

Прислать комментарий     Решение

Задача 111647

Тема:   [ Задачи на движение ]
Сложность: 3+
Классы: 8,9

Несколько спортсменов стартовали одновременно с одного и того же конца прямой беговой дорожки. Их скорости различны, но постоянны. Добежав до конца дорожки, спортсмен мгновенно разворачивается и бежит обратно, затем разворачивается на другом конце, и т.д. В какой-то момент все спортсмены снова оказались в одной точке. Докажите, что такие встречи всех будут продолжаться и впредь.

Прислать комментарий     Решение

Задача 111854

Темы:   [ Задачи на движение ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

От Майкопа до Белореченска 24 км. Три друга должны добраться: двое из Майкопа в Белореченск, а третий – из Белореченска в Майкоп. У них есть один велосипед, первоначально находящийся в Майкопе. Каждый из друзей может идти (со скоростью не более 6 км/ч) и ехать на велосипеде (со скоростью не более 18 км/ч). Оставлять велосипед без присмотра нельзя. Докажите, что через 2 часа 40 минут все трое друзей могут оказаться в пунктах назначения. Ехать на велосипеде вдвоём нельзя.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 153]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .