ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107]      



Задача 61451

Темы:   [ Целочисленные и целозначные многочлены ]
[ Интерполяционный многочлен Ньютона ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 10,11

Докажите, что если многочлен  f(x) степени n принимает целые значения в точках  x = 0, 1, ..., n,  то он принимает целые значения во всех целых точках.

Прислать комментарий     Решение

Задача 111336

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Сочетания и размещения ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4+
Классы: 9,10

Назовём усложнением числа приписывание к нему одной цифры в начало, в конец или между любыми двумя его цифрами. Существует ли натуральное число, из которого невозможно получить полный квадрат с помощью ста усложнений?

Прислать комментарий     Решение

Задача 61452

Темы:   [ Целочисленные и целозначные многочлены ]
[ Арифметика остатков (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 5
Классы: 9,10,11

  а) Пусть q – натуральное число и функция   f(x) = cqx + anxn + ... + a1x + a0  принимает целые значения при  x = 0, 1, 2, ..., n + 1.
Докажите, что при любом натуральном x число  f(x) также будет целым.
  б) Пусть выполняются условия пункта а) и  f(x) делится на некоторое целое  m ≥ 1  при  x = 0, 1, 2, ..., n + 1.  Докажите, что  f(x) делится на m при всех натуральных x.

Прислать комментарий     Решение

Задача 64593

Темы:   [ Теория алгоритмов (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
[ Треугольник Паскаля и бином Ньютона ]
[ Сочетания и размещения ]
Сложность: 5
Классы: 10,11

Перед Алёшей 100 закрытых коробочек, в каждой – либо красный, либо синий кубик. У Алёши на счету есть рубль. Он подходит к любой закрытой коробочке, объявляет цвет и ставит любую сумму (можно нецелое число копеек, но не больше, чем у него на счету в данный момент). Коробочка открывается, и Алёшин счет увеличивается или уменьшается на поставленную сумму в зависимости от того, угадан или не угадан цвет кубика. Игра продолжается, пока не будут открыты все все коробочки. Какую наибольшую сумму на счету может гарантировать себе Алёша, если ему известно, что
  a) синий кубик только один;
  б) синих кубиков ровно n.
(Алёша может поставить и 0, то есть просто бесплатно открыть коробочку и увидеть цвет кубика.)

Прислать комментарий     Решение

Задача 61099

 [Многочлены Чебышева]
Темы:   [ Тригонометрическая форма. Формула Муавра ]
[ Многочлены Чебышева ]
[ Тригонометрия (прочее) ]
[ Комплексные числа помогают решить задачу ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4-
Классы: 9,10,11

а) Используя формулу Муавра, докажите, что  cos nx = Tn(cos x),  sin nx = sin x Un–1(cos x),  где Tn(z) и Un(z) – многочлены степени n.
При этом по определению  U0(z) = 1.
б) Вычислите в явном виде эти многочлены для  n = 0, 1, 2, 3, 4, 5.

  Многочлены Tn(z) и Un(z) называются многочленами Чебышёва первого и второго рода соответственно.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .