ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 402]      



Задача 110976

Темы:   [ Признаки и свойства параллелограмма ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

На стороне CD параллелограмма ABCD с тупым углом при вершине D построен равносторонний треугольник CDE так, что точки A и E лежат по разные стороны прямой CD . Известно, что расстояния от точек D и E до прямой BC равны соответственно 3 и 8, а расстояние от точки E до прямой AB равно 13. Найдите площадь параллелограмма ABCD .
Прислать комментарий     Решение


Задача 110977

Темы:   [ Признаки и свойства параллелограмма ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Внутри параллелограмма KLMN взята точка P так, что треугольник KPN равносторонний. Известно, что расстояния от точки P до прямых KL , LM и MN равны соответственно 10, 3 и 6. Найдите периметр параллелограмма.
Прислать комментарий     Решение


Задача 110978

Темы:   [ Признаки и свойства параллелограмма ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

На стороне KN параллелограмма KLMN с тупым углом при вершине M построен равносторонний треугольник KTN так, что точки T и M лежат по разные стороны прямой KN . Известно, что расстояния от точек T и K до прямой MN равны соответственно 8 и 5, а расстояние от точки T до прямой LM равно 10. Найдите площадь параллелограмма KLMN .
Прислать комментарий     Решение


Задача 111677

Темы:   [ Признаки и свойства параллелограмма ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Пятиугольники ]
Сложность: 4
Классы: 8,9

В равностороннем (неправильном) пятиугольнике ABCDE угол ABC вдвое больше угла DBE. Найдите величину угла ABC.

Прислать комментарий     Решение

Задача 115299

Темы:   [ Признаки и свойства параллелограмма ]
[ Ортоцентр и ортотреугольник ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 4
Классы: 8,9

AA1 и CC1 — высоты остроугольного треугольника ABC , в котором ABC = 45o . Точки O и H — соответственно центр описанной окружности и ортоцентр треугольника ABC . Докажите, что прямая A1C1 проходит через середину отрезка OH .
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .