Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 737]
|
|
Сложность: 2+ Классы: 6,7,8
|
Первоначально на каждом поле доски 1×n стоит шашка. Первым ходом разрешается переставить любую шашку на соседнюю клетку (одну из двух, если шашка не с краю), так что образуется столбик из двух шашек. Далее очередным ходом каждый столбик можно передвинуть в любую сторону на столько клеток, сколько в нём шашек (в пределах доски); если столбик попал на непустую клетку, он ставится на стоящий там столбик и объединяется с ним. Докажите, что за n – 1 ход можно собрать все шашки на одной клетке.
|
|
Сложность: 2+ Классы: 5,6,7
|
Петя и Миша играют в такую игру. Петя берёт в каждую руку по монетке: в одну – 10 коп., а в другую – 15. После этого содержимое левой руки он умножает на 4, 10, 12 или 26, а содержимое правой руки – на 7, 13, 21 или 35. Затем Петя складывает два получившихся произведения и называет Мише результат. Может ли Миша, зная этот результат, определить, в какой руке у Пети – правой или левой – монета достоинством в 10 коп.?
|
|
Сложность: 2+ Классы: 5,6,7
|
Имеются неправильные чашечные весы, мешок крупы и правильная гиря в 1 кг. Как отвесить на этих весах 1 кг крупы?
|
|
Сложность: 2+ Классы: 6,7,8
|
В квадрате 4×4 клетки левой половины покрашены в чёрный цвет, а остальные – в белый. За одну операцию разрешается перекрасить в противоположный цвет все клетки внутри любого прямоугольника. Как за три операции из первоначальной раскраски получить шахматную?
Семь монет расположены по кругу. Известно, что какие-то четыре из них, идущие подряд, – фальшивые и что каждая фальшивая монета легче настоящей. Объясните, как найти две фальшивые монеты за одно взвешивание на чашечных весах без гирь. (Все фальшивые монеты весят одинаково.)
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 737]