|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что система уравнений x1 – x2 = a, x3 – x4 = b, x1 + x2 + x3 + x4 = 1 имеет хотя бы одно положительное решение тогда и только тогда, когда |a| + |b| < 1. |
Страница: 1 2 3 >> [Всего задач: 13]
Решите уравнение
Докажите тождество
Пусть x1 < x2 < ... < xn – действительные числа. Постройте многочлены f1(x), f2(x), ..., fn(x) степени n – 1, которые удовлетворяют условиям fi(xi) = 1 и fi(xj) = 0 при i ≠ j (i, j = 1, 2, ..., n).
Постройте многочлены f(x) степени не выше 2, которые удовлетворяют условиям:
Корабль с постоянной скоростью проплывает мимо небольшого острова. Капитан каждый час измеряет расстояние до острова.
Страница: 1 2 3 >> [Всего задач: 13] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|