Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 499]
Докажите, что произведение последней цифры числа 2n и суммы всех цифр этого числа, кроме последней, делится на 3.
Может ли сумма цифр точного квадрата равняться 1970?
Из трёхзначного числа вычли сумму его цифр. С полученным числом проделали то же самое и так далее, 100 раз. Докажите, что в результате получится нуль.
Можно ли составить из цифр 2, 3, 4, 9 (каждую цифру можно использовать сколько угодно раз) два числа, одно из которых в 19 раз больше другого?
|
|
Сложность: 3+ Классы: 7,8,9
|
Сумма цифр трёхзначного числа равна 7. Докажите, что это число делится на 7 тогда и только тогда, когда две его последние цифры равны.
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 499]