ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 606]      



Задача 88246

Тема:   [ Деление с остатком ]
Сложность: 2-
Классы: 5,6,7

Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза?

Прислать комментарий     Решение

Задача 30388

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 2
Классы: 7,8

Найдите остаток от деления 2100 на 3.

Прислать комментарий     Решение

Задача 31235

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2
Классы: 6,7,8

Найти последнюю цифру числа  1·2 + 2·3 + ... + 999·1000.

Прислать комментарий     Решение

Задача 88071

Темы:   [ Деление с остатком ]
[ Перебор случаев ]
Сложность: 2
Классы: 5,6,7

Найдите все натуральные числа, при делении которых на 7 в частном получится то же число, что и в остатке.

Прислать комментарий     Решение

Задача 88224

Темы:   [ Деление с остатком ]
[ Уравнения в целых числах ]
Сложность: 2
Классы: 5,6,7

При делении некоторого числа m на 13 и 15 получили одинаковые частные, но первое деление было с остатком 8, а второе без остатка.
Найдите число m.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .