Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 302]
|
|
Сложность: 3 Классы: 7,8,9
|
Кусок сыра имеет форму кубика 3×3×3, из которого вырезан центральный кубик. Мышь начинает грызть этот кусок сыра. Сначала она съедает некоторый кубик 1×1×1. После того, как мышь съедает очередной кубик 1×1×1, она приступает к съедению одного из соседних (по грани) кубиков с только что съеденным. Сможет ли мышь съесть весь кусок сыра?
|
|
Сложность: 3 Классы: 5,6,7
|
Куб, стоящий на плоскости, несколько раз перекатили через его рёбра, после чего он вернулся на прежнее место.
Обязательно ли он стоит на той же грани?
|
|
Сложность: 3 Классы: 10,11
|
Разрезать куб на три равные пирамиды.
Каждая грань куба заклеивается двумя равными прямоугольными треугольниками
с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти
треугольники расположить так, чтобы при каждой вершине куба сумма белых углов
была равна сумме чёрных углов?
Дан куб
ABCDA1
B1
C1
D1
с ребром
a . а) Докажите, что
AA1
и
BC – скрещивающиеся прямые; б) постройте их общий перпендикуляр;
в) найдите расстояние между этими прямыми.
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 302]