Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г.

   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 449]      



Задача 52808

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Найдите радиус окружности, которая высекает на обеих сторонах угла, равного $ \alpha$, хорды, равные a, если известно, что расстояние между ближайшими концами этих хорд равно b.

Прислать комментарий     Решение


Задача 53240

Темы:   [ Признаки и свойства касательной ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В окружности радиуса R = 4 проведены хорда AB и диаметр AK, образующий с хордой угол $ {\frac{\pi}{8}}$. В точке B проведена касательная к окружности, пересекающая продолжение диаметра AK в точке C. Найдите медиану AM треугольника ABC.

Прислать комментарий     Решение


Задача 53263

Темы:   [ Вписанные и описанные окружности ]
[ Теорема косинусов ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

В треугольник ABC со стороной BC, равной 9, вписана окружность, касающаяся стороны BC в точке D. Известно, что AD = DC и косинус угла BCA равен $ {\frac{2}{3}}$. Найдите AC.

Прислать комментарий     Решение


Задача 53264

Темы:   [ Вписанные и описанные окружности ]
[ Теорема косинусов ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

В треугольник ABC со стороной BC, равной 11, вписана окружность, касающаяся стороны AB в точке D. Известно, что AC = CD и косинус угла BAC равен $ {\frac{1}{6}}$. Найдите AC.

Прислать комментарий     Решение


Задача 54712

Темы:   [ Параллелограмм Вариньона ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

Диагонали выпуклого четырёхугольника равны c и d и пересекаются под углом 45o. Найдите отрезки, соединяющие середины противоположных сторон четырёхугольника.

Прислать комментарий     Решение


Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 449]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .