ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Если две параллельные плоскости пересечь третьей, то прямые пересечения будут параллельны. Доказать, что если натуральное число k делится на 10101010101, то в его десятичной записи по крайней мере шесть цифр отличны от нуля. Отрезок постоянной длины движется по плоскости
так, что его концы скользят по сторонам прямого угла ABC. По какой
траектории движется середина этого отрезка?
Докажите, что разность квадратов соседних сторон параллелограмма меньше произведения его диагоналей. |
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 598]
Найти все двузначные числа, сумма цифр которых не меняется при умножении числа на 2, 3, 4, 5, 6, 7, 8 и 9.
От A до B 999 км. Вдоль дороги стоят километровые столбы, на которых написаны расстояния до A и до B:
Сколько существует четырёхзначных номеров (от 0001 до 9999), у которых сумма двух первых цифр равна сумме двух последних цифр?
Число N является точным квадратом и не заканчивается нулём. После зачёркивания у этого числа двух последних цифр снова получится точный квадрат. Найти наибольшее число N с таким свойством.
У числа 21970 зачеркнули его первую цифру и прибавили её к оставшемуся числу. С результатом проделали ту же операцию и т.д., до тех пор пока не получили десятизначное число. Доказать, что в этом числе есть две одинаковые цифры.
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 598]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке