ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Касающиеся окружности
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 329]
В прямоугольнике ABCD, где AB = 6, AD = 31 + , расположены две окружности. Окружность радиуса 2 с центром в точке K касается сторон AB и AD. Окружность радиуса 1 с центром в точке L касается стороны CD и первой окружности. Найдите площадь треугольника CLM, если M — основание перпендикуляра, опущенного из вершины B на прямую, проходящую через точки K и L.
Дан прямоугольник ABCD, в котором AB = 10. Окружность радиуса 4 - 2 с центром в точке K касается сторон AB и AD. Окружность радиуса 4 + 2 с центром в точке L, лежащей на стороне CD, касается стороны AD и первой окружности. Найдите площадь треугольника CLM, если M — основание перпендикуляра, опущенного из вершины B на прямую, проходящую через точки K и L.
Имеются четыре окружности. В первой проведена хорда AB, при этом расстояние от середины меньшей из двух образовавшихся дуг до AB равно 1. Вторая, третья и четвёртая окружности расположены внутри большего сегмента и касаются хорды AB. Вторая и четвёртая окружности касаются изнутри первой и внешним образом третьей. Сумма радиусов трёх последних окружностей равна радиусу первой окружности. Найдите радиус третьей окружности, если известно, что прямая, проходящая через центры первой и третьей окружностей, непараллельна прямой, проходящей через центры двух других окружностей.
Две окружности с центрами A и B и радиусами соответственно 2 и 1 касаются друг друга. Точка C лежит на прямой, касающейся каждой из окружностей, и находится на расстоянии от середины отрезка AB. Найдите площадь S треугольника ABC, если известно, что S > 2.
В треугольнике PQR медиана, проведённая из вершины Q, равна . Окружности с центрами в вершинах P и R и радиусами соответственно 5 и 1 касаются друг друга, а вершина Q лежит на прямой, касающейся каждой из окружностей. Найдите площадь S треугольника PQR, если известно, что S < 7.
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 329] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|