Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 161]
Из листа клетчатой бумаги размером
29×29 клеток вырезано 99
квадратиков размером 2×2 клетки. Докажите, что из
него можно вырезать еще один такой квадратик.
Выпуклый
n-угольник разбит на треугольники
непересекающимися диагоналями, причем в каждой его вершине сходится
нечетное число треугольников. Докажите, что
n делится на 3.
|
|
Сложность: 4 Классы: 8,9,10
|
Кузнечик умеет прыгать по полоске из n клеток на 8, 9 и 10 клеток в любую сторону. Будем называть натуральное число n пропрыгиваемым, если кузнечик может, начав с некоторой клетки, обойти всю полоску, побывав на каждой клетке ровно один раз. Найдите хотя бы одно n > 50, которое не является пропрыгиваемым.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В клетчатом деревянном квадрате 102 клетки намазаны чёрной краской. Петя, используя квадрат как печать, 100 раз приложил его к белому листу, и каждый раз эти 102 клетки (и только они) оставляли чёрный отпечаток на бумаге. Мог ли в итоге на листе получиться квадрат 101×101, все клетки которого, кроме одной угловой, чёрные?
|
|
Сложность: 4 Классы: 8,9,10,11
|
По кругу лежит 101 монета, каждая весит 10 г или 11 г. Докажите, что найдётся монета, для которой суммарная масса $k$ монет слева от неё равна суммарной массе $k$ монет справа от неё, если
а) k=50;
б) k=49.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 161]