ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 1007]      



Задача 60385

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 8

У Нины 7 разных шоколадных конфет, у Коли 9 разных карамелек. Сколькими способами они могут обменяться друг с другом пятью конфетами?

Прислать комментарий     Решение

Задача 60421

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9

Сколько четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4 и 5, если:
  а) никакая цифра не повторяется более одного раза;
  б) повторения цифр допустимы;
  в) числа должны быть нечётными и повторений цифр быть не должно?

Прислать комментарий     Решение

Задача 65953

Темы:   [ Десятичная система счисления ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 8,9

Сколько существует восьмизначных чисел, в записи которых цифры идут в порядке убывания?

Прислать комментарий     Решение

Задача 88198

Темы:   [ Взвешивания ]
[ Раскладки и разбиения ]
Сложность: 2+
Классы: 6,7,8

Какие восемь монет нужно взять, чтобы с их помощью можно было бы без сдачи заплатить любую сумму от 1 коп. до 1 руб.?
(В хождении были монеты в 1, 3, 5, 10, 20 и 50 коп.)

Прислать комментарий     Решение

Задача 88280

Темы:   [ Подсчет двумя способами ]
[ Степень вершины ]
Сложность: 2+
Классы: 6,7,8

В сказочной стране Перра-Терра среди прочих обитателей проживают Карабасы и Барабасы. Каждый Карабас знаком с шестью Карабасами и девятью Барабасами. Каждый Барабас знаком с десятью Карабасами и семью Барабасами. Кого в этой стране больше – Карабасов или Барабасов?

Прислать комментарий     Решение

Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 1007]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .