ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Играют двое. У первого 1000 чётных карточек (2, 4, ..., 2000), у второго – 1001 нечётная (1, 3, ... , 2001). Ходят по очереди, начинает первый. Ход состоит в следующем: игрок, чья очередь ходить, выкладывает одну из своих карточек, а другой, посмотрев на неё, выкладывает одну из своих карточек; тот, у кого число на карточке больше, записывает себе одно очко, а обе выложенные карточки выбрасываются. Всего получается 1000 ходов (одна карточка второго не используется). Какое наибольшее число очков может гарантировать себе каждый из игроков (как бы ни играл его соперник)?

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 19]      



Задача 60824

Темы:   [ Китайская теорема об остатках ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 9,10,11

Пользуясь результатом задачи 60823, укажите в явном виде число x, которое удовлетворяет системе из задачи 60825.

Прислать комментарий     Решение

Задача 60838

 [Восточный Календарь]
Тема:   [ Китайская теорема об остатках ]
Сложность: 3
Классы: 8,9,10,11

В китайской натурофилософии выделяются пять первоэлементов природы – дерево, огонь, металл, вода и земля, которым соответствуют пять цветов – синий (или зелёный), красный, белый, чёрный и жёлтый. В восточном календаре с древних времен используется 12-летний животный цикл так, что каждому из 12 годов в цикле соответствует одно из животных. Кроме того, каждый год проходит под покровительством одной из стихий и окрашивается в один из цветов:
  годы, оканчивающиеся на 0 и 1 – годы металла (цвет белый);
  годы, оканчивающиеся на 2 и 3 – это годы воды (цвет чёрный);
  годы, оканчивающиеся на 4 и 5 – годы дерева (цвет синий);
  годы, оканчивающиеся на 6 и 7 – годы огня (цвет красный);
  годы, оканчивающиеся на 8 и 9 – годы земли (цвет жёлтый).
В 60-летнем календарном цикле каждое животное возникает пять раз. С помощью китайской теоремы об остатках объясните, почему оно все пять раз бывает разного цвета.

Прислать комментарий     Решение

Задача 60729

Тема:   [ Китайская теорема об остатках ]
Сложность: 3+
Классы: 8,9,10

Докажите что если  (m, n) = 1,  то сравнение   a ≡ b (mod mn)  равносильно одновременному выполнению двух сравнений  a ≡ b (mod m)  и  a ≡ b (mod n).

Прислать комментарий     Решение

Задача 60820

Темы:   [ Китайская теорема об остатках ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

При каких целых n число  n² + 3n + 1  делится на 55?

Прислать комментарий     Решение

Задача 60822

Темы:   [ Китайская теорема об остатках ]
[ Неопределено ]
Сложность: 3+
Классы: 9,10,11

Натуральные числа m1, ..., mn попарно взаимно просты. Докажите, что сравнение  ab (mod m1m2...mn)  равносильно системе
    a ≡ b (mod m1),
    a ≡ b (mod m2),
        ...
    a ≡ b (mod mn).

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .