Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Какое наименьшее число точек можно выбрать на окружности длины 1956 так, чтобы для каждой из этих точек нашлась ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояния измеряются по окружности)?

Вниз   Решение


Докажите, что каждая сторона треугольника видна из центра вписанной окружности под тупым углом.

ВверхВниз   Решение


Число N является точным квадратом и не заканчивается нулём. После зачёркивания у этого числа двух последних цифр снова получится точный квадрат. Найти наибольшее число N с таким свойством.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]      



Задача 61030

Темы:   [ Симметрические многочлены ]
[ Теорема Виета ]
Сложность: 4-
Классы: 9,10,11

Выразите через элементарные симметрические многочлены следующие выражения:
  а}  (x + y)(y + z)(x + z);
  б}  x3 + y3 + z3 – 3xyz;
  в}  x3 + y3;
  г)  (x2 + y2)(y2 + z2)(x2 + z2);
  д)  
  е)  x4 + y4 + z4.

Прислать комментарий     Решение

Задача 61036

Темы:   [ Симметрические многочлены ]
[ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 4-
Классы: 9,10,11

Известно, что x1, x2, x3 – корни уравнения  x3 – 2x2 + x + 1 = 0.
Составьте новое уравнение, корнями которого были бы числа  y1 = x2x3y2 = x1x3y3 = x1x2.

Прислать комментарий     Решение

Задача 61042

Темы:   [ Симметрические многочлены ]
[ Теорема Виета ]
Сложность: 4-
Классы: 8,9,10

Известно, что целые числа a, b, c удовлетворяют равенству  a + b + c = 0.  Докажите, что  2a4 + 2b4 + 2c4  – квадрат целого числа.

Прислать комментарий     Решение

Задача 61268

 [Дискриминант кубического уравнения]
Темы:   [ Кубические многочлены ]
[ Теорема Виета ]
[ Симметрические многочлены ]
Сложность: 4-
Классы: 9,10,11

Пусть уравнение  x³ + px + q = 0  имеет корни x1, x2 и x3. Выразите через p и q дискриминант этого уравнения   D = (x1x2)²(x² – x3)²(x3x1)².

Прислать комментарий     Решение

Задача 61269

Темы:   [ Кубические многочлены ]
[ Теорема Виета ]
[ Симметрические многочлены ]
Сложность: 4
Классы: 9,10,11

Докажите, что равенство  4p³ + 27q² = 0  является необходимым и достаточным условием для совпадения по крайней мере двух корней уравнения
x³ + px + q = 0.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .