Страница:
<< 6 7 8 9 10 11 12 >> [Всего задач: 165]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Коля Васин задумал число от 1 до 31
включительно и выбрал из 5 данных карточек
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
17 |
19 |
21 |
23 |
25 |
27 |
29 |
31 |
2 |
3 |
6 |
7 |
10 |
11 |
14 |
15 |
18 |
19 |
22 |
23 |
26 |
27 |
30 |
31 |
4 |
5 |
6 |
7 |
12 |
13 |
14 |
15 |
20 |
21 |
22 |
23 |
28 |
29 |
30 |
31 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
те, на которых это число присутствует. Как, зная эти карточки,
угадать задуманное число? Какими должны быть карточки, чтобы по
ним можно было угадывать числа от 1 до 63?
|
|
Сложность: 4- Классы: 7,8,9,10,11
|
Карточный фокус. а) Берется колода из
27 карт (без одной масти). Ваш друг загадывает одну из карт.
После чего вы раскладываете все карты в три равные кучки, кладя
каждый раз по одной карте (в первую кучку, затем во вторую, затем
в третью, потом снова в первую и т. д.). Ваш друг указывает на ту
кучку, в которой лежит его карта. Далее вы складываете все три
кучки вместе, вставляя при этом указанную кучку между двумя
другими. Эта процедура повторяется еще два раза. На каком месте в
колоде окажется загаданная карта, после того, как вы сложите
вместе три кучки в третий раз?
б) На каком месте окажется загаданная карта, если с самого начала
было 3
n (
n < 9) карт?
Миша стоит в центре круглой лужайке радиуса 100 метров. Каждую минуту он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Катя имеет право заставить его сменить направление на противоположное. Может ли Миша действовать так, чтобы в какой-то момент обязательно выйти с лужайки, или Катя всегда сможет ему помешать?
Дана клетчатая полоса 1×N. Двое играют в следующую игру. На очередном ходу первый игрок ставит в одну из свободных клеток крестик, а второй – нолик. Не разрешается ставить в соседние клетки два крестика или два нолика. Проигрывает тот, кто не может сделать ход.
Кто из игроков может всегда выиграть (как бы ни играл его соперник)?
Дана клетчатая полоска (шириной в одну клетку), бесконечная в обе стороны. Две клетки полоски являются ловушками, между ними – N клеток, на одной из которых сидит кузнечик. На каждом ходу мы называем натуральное число, после чего кузнечик прыгает на это число клеток влево или вправо (по своему выбору). При каких N можно называть числа так, чтобы гарантированно загнать кузнечика в одну из ловушек, где бы он ни был изначально между ловушками и как бы ни выбирал направления прыжков? (Мы всё время видим, где сидит кузнечик.)
Страница:
<< 6 7 8 9 10 11 12 >> [Всего задач: 165]