ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 105]      



Задача 64604

Темы:   [ Десятичная система счисления ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 8,9

Число N является произведением двух последовательных натуральных чисел. Докажите, что
  а) можно приписать к этому числу справа две цифры так, чтобы получился точный квадрат;
  б) если  N > 12,  это можно сделать единственным способом.

Прислать комментарий     Решение

Задача 64622

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 8,9,10

Число x таково, что среди четырёх чисел     ровно одно не является целым.
Найдите все такие x.

Прислать комментарий     Решение

Задача 64638

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 10,11

Числа x, y и z таковы, что все три числа  x + yz,  y + zx  и  z + xy  рациональны, а  x² + y² = 1.  Докажите, что число xyz² также рационально.

Прислать комментарий     Решение

Задача 64828

Темы:   [ Системы линейных уравнений ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 8,9,10

Известно, что  .  Какие значения может принимать выражение  ?

Прислать комментарий     Решение

Задача 65197

Темы:   [ Последовательности (прочее) ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 9,10

Автор: Креков Д.

По целому числу a построим последовательность  a1 = aa2 = 1 + a1a3 = 1 + a1a2a4 = 1 + a1a2a3,  ... (каждое следующее число на 1 превосходит произведение всех предыдущих). Докажите, что разности ее соседних членов  an+1an  – квадраты целых чисел.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 105]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .