Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 117]
|
|
Сложность: 3+ Классы: 10,11
|
Квадратный трёхчлен f(x) = ax² + bx + c, не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
Может ли дискриминант трёхчлена f(x) быть рациональным?
|
|
Сложность: 3+ Классы: 8,9,10
|
Существуют ли такие целые числа
a и
b, что
а) уравнение
x² +
ax + b = 0 не имеет корней, а уравнение [
x²] +
ax + b = 0 имеет?
б) уравнение
x² + 2
ax + b = 0 не имеет корней, а уравнение [
x²] + 2
ax + b = 0 имеет?
Докажите, что на графике любого квадратного трёхчлена со старшим коэффициентом 1, имеющего ровно один корень, найдётся такая точка (p, q), что трёхчлен x² + px + q также имеет ровно один корень.
|
|
Сложность: 3+ Классы: 8,9,10
|
Квадратный трёхчлен f(x) = ax² + bx + c таков, что уравнение f(x) = x не имеет вещественных корней.
Докажите, что уравнение f(f(x)) = x также не имеет вещественных корней.
|
|
Сложность: 3+ Классы: 9,10,11
|
Если при любом положительном p все корни уравнения ax² + bx + c + p = 0 действительны и положительны, то коэффициент a равен нулю. Докажите.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 117]